Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Geophys Res Lett ; 48(20): e2021GL095882, 2021 Oct 28.
Article in English | MEDLINE | ID: covidwho-1592869

ABSTRACT

Global aviation dropped precipitously during the covid-19 pandemic, providing an unprecedented opportunity to study aviation-induced cirrus (AIC). AIC is believed to be responsible for over half of aviation-related radiative forcing, but until now, its radiative impact has only been estimated from simulations. Here, we show that satellite observations of cirrus cloud do not exhibit a detectable global response to the dramatic aviation reductions of spring 2020. These results indicate that previous model-based estimates may overestimate AIC. In addition, we find no significant response of diurnal surface air temperature range to the 2020 aviation changes, reinforcing the findings of previous studies. Though aviation influences the climate through multiple pathways, our analysis suggests that its warming effect from cirrus changes may be smaller than previously estimated.

2.
Geophys Res Lett ; 48(8): e2020GL091883, 2021 Apr 28.
Article in English | MEDLINE | ID: covidwho-1124655

ABSTRACT

Many nations responded to the corona virus disease-2019 (COVID-19) pandemic by restricting travel and other activities during 2020, resulting in temporarily reduced emissions of CO2, other greenhouse gases and ozone and aerosol precursors. We present the initial results from a coordinated Intercomparison, CovidMIP, of Earth system model simulations which assess the impact on climate of these emissions reductions. 12 models performed multiple initial-condition ensembles to produce over 300 simulations spanning both initial condition and model structural uncertainty. We find model consensus on reduced aerosol amounts (particularly over southern and eastern Asia) and associated increases in surface shortwave radiation levels. However, any impact on near-surface temperature or rainfall during 2020-2024 is extremely small and is not detectable in this initial analysis. Regional analyses on a finer scale, and closer attention to extremes (especially linked to changes in atmospheric composition and air quality) are required to test the impact of COVID-19-related emission reductions on near-term climate.

SELECTION OF CITATIONS
SEARCH DETAIL